PEDAGOGIK TADQIQOTLAR JURNALI Ne 4, Mart, 2025
ISSN: 3060-4923, Impact Factor — 7,212 worldly knowledge
Index: google scholar, research gate, research bib, zenodo, open aire.
https://scholar.google.com/scholar?hl=ru&as sdt=0%2C5&g=wosjournals.com&btnG
https://www.researchgate.net/search/publication?q=worldly %20knowledge
https://journalseeker.researchbib.com/view/issn/3060-4923

THE IMPORTANCE AND APPLICATION OF POLYMORPHISM IN PYTHON

Hamroyev Bobirjon Baxridtdinovich

Osiyo xalgaro universiteti,
“Umumtexnik fanlar” kafedrasi o qituvchisi

Keywords: Polymorphism, Python, Object-Oriented Programming (OOP), Method Overriding,
Method Overloading, Code Reusability, Flexibility

Introduction

Polymorphism is a fundamental concept in object-oriented programming (OOP) that allows
objects of different classes to be treated as instances of the same class through a common
interface. It enhances code reusability, flexibility, and scalability, making it an essential feature
in Python programming. This article explores the significance of polymorphism in Python and
how it can be effectively applied in various programming scenarios.

Key benefits of polymorphism include:Code Reusability: Developers can write general methods
that work with multiple data types and classes, reducing redundancy.Flexibility: Objects of
different classes can be used interchangeably if they follow a shared interface.Simplification of
Code Maintenance: Since multiple objects can be treated uniformly, debugging and updating
code becomes easier.Extensibility: New classes can be added without modifying existing code,
improving software scalability. Encapsulation and Abstraction Support: By using polymorphism,
unnecessary details are hidden while focusing on essential functionalities.

The Concept of Polymorphism

Polymorphism in Python refers to the ability of different object types to respond to the same
method calls in different ways. This enables a more dynamic and extensible programming
approach. There are two main types of polymorphism in Python:

Compile-time polymorphism (Method Overloading):Traditional method overloading, where
multiple methods have the same name but different parameters, is not directly supported in
Python.However, Python achieves similar functionality through default parameters, variable-
length arguments, and function overloading using external libraries.Allows developers to define
multiple behaviors for the same function based on the arguments provided.Enhances function
versatility by handling different input formats. Reduces code duplication and improves
maintainability. Runtime polymorphism (Method Overriding):Allows a subclass to provide a
specific implementation of a method that is already defined in its superclass. The method in the
subclass must have the same name and parameters as in the parent class.Enables dynamic
method resolution during execution rather than at compile time.Provides flexibility to extend and
modify behaviors without altering the parent class.Improves modularity by ensuring that new
subclasses can have their unique implementations.Applications of Polymorphism in Python
Enables child classes to modify inherited methods to suit their specific needs.Commonly used in
framework development where default behaviors need customization. Facilitates the
implementation of abstract classes and interfaces.Supports the development of plug-and-play
components where objects from different classes interact seamlessly.Ensures adherence to the

e —
120

https://scholar.google.com/scholar?hl=ru&as_sdt=0%2C5&q=wosjournals.com&btnG
https://www.researchgate.net/search/publication?q=worldly%20knowledge
https://journalseeker.researchbib.com/view/issn/3060-4923

PEDAGOGIK TADQIQOTLAR JURNALI Ne 4, Mart, 2025
ISSN: 3060-4923, Impact Factor — 7,212 worldly knowledge
Index: google scholar, research gate, research bib, zenodo, open aire.
https://scholar.google.com/scholar?hl=ru&as sdt=0%2C5&g=wosjournals.com&btnG
https://www.researchgate.net/search/publication?q=worldly %20knowledge
https://journalseeker.researchbib.com/view/issn/3060-4923

Open/Closed Principle, which promotes extending functionalities without modifying existing
code.

Duck TypingA dynamic approach where an object’s suitability is determined by its behavior
rather than its class.Eliminates the need for explicit class inheritance, making Python more
flexible than statically typed languages.Enhances interoperability by allowing functions and
classes to work with various objects, as long as they implement expected behaviors.Encourages
writing more generic, reusable code that can handle multiple data types.Supports polymorphism
in cases where multiple unrelated classes share similar method names and behaviors.Operator
OverloadingProvides a way to redefine how standard operators work with user-defined
classes.Makes custom objects more intuitive to use, improving readability and usability.Enables
mathematical operations on objects without explicitly calling methods.Facilitates seamless
integration of new data types into existing codebases.Enhances code abstraction by allowing
developers to create more natural syntax structures.Function and Method Overloading via
Variable ArgumentsWhile Python does not support traditional function overloading, it allows
multiple argument types using *args and **kwargs.Enables writing functions that handle varying
numbers of arguments without duplicating logic.Commonly used in libraries and APIs to support
multiple use cases with a single function.Reduces the complexity of managing multiple function
definitions. Increases code maintainability by centralizing logic within a single method. Allows
handling different data types within a single function, improving efficiency.Supports default
argument values, enabling functions to adapt dynamically.Facilitates function extension in
subclasses without modifying base class logic.Helps in designing APIs where users can provide
different argument types or numbers.Improves performance by reducing redundant function calls
and simplifying method design.

Abstract Classes and Interfaces

Abstract base classes (ABCs) define a common interface for multiple subclasses.Enforce method
implementation in derived classes, ensuring consistency across different components.Support
polymorphic behavior by allowing different classes to be treated uniformly.Useful in designing
modular applications where various components interact through a shared interface. Encourages
better design patterns by separating interface definitions from implementations.

Differences Between Abstract Classes and Interfaces:

Feature Abstract Classes Interfaces
Instantiation Not possible Not possible
Method Can have both abstract and concrete|Only method signatures, no
Implementation methods implementation
Multiple Inheritance ||Limited (single inheritance) AHOWS multlp le interface
implementation

Used when there is a need for shared|Used when only method structure
Use Case . . .

functionality is needed

121

https://scholar.google.com/scholar?hl=ru&as_sdt=0%2C5&q=wosjournals.com&btnG
https://www.researchgate.net/search/publication?q=worldly%20knowledge
https://journalseeker.researchbib.com/view/issn/3060-4923

PEDAGOGIK TADQIQOTLAR JURNALI Ne 4, Mart, 2025
ISSN: 3060-4923, Impact Factor — 7,212 worldly knowledge
Index: google scholar, research gate, research bib, zenodo, open aire.
https://scholar.google.com/scholar?hl=ru&as sdt=0%2C5&g=wosjournals.com&btnG
https://www.researchgate.net/search/publication?q=worldly %20knowledge
https://journalseeker.researchbib.com/view/issn/3060-4923

1. Plugin Systems: Abstract classes provide a structured way to extend functionality in
software frameworks.

2. Database Drivers: Interfaces define the required methods for database interactions,
ensuring compatibility across multiple databases.

3. Game Development: Abstract classes help define base game entities while allowing
unique behavior for different characters or objects.

4. Machine Learning Pipelines: Interfaces enforce standardization in data preprocessing,
model training, and evaluation components.

5. Web Frameworks: Abstract classes are used to define request handlers, middleware

components, and response processing mechanisms.
Conclusion

Polymorphism is a powerful OOP feature in Python that improves code flexibility and
maintainability. Through method overriding, duck typing, and operator overloading, developers
can create adaptable and reusable code structures. Understanding and leveraging polymorphism
effectively can enhance the efficiency of software development in Python. By applying
polymorphism, developers can ensure that their code is scalable, maintainable, and extensible for
future growth.

References

1. Hamroyev, B. B. (2025). PYTHONDA MASSIVLAR BILAN ISHLASH. PEDAGOGIK
TADQIQOTLAR JURNALLI 2(2), 88-91.

2. Xampoes, b. B. (2024). ICKYCCTBEHHBIM MHTEJUIEKT. QISHLOQ XO'JALIGI
VA GEOGRAFIYA FANLARI ILMIY JURNALLI, 2(5), 37-43.

3. Hamroyev, B. B. (2025). PYTHONDA MASSIVLAR BILAN ISHLASH. PEDAGOGIK
TADQIQOTLAR JURNALLI 2(2), 88-91.

4. Xampoes, b. B. (2024). CTATUCTUYECKUI AHAJIN3 C WICIIOJIb30BAHUEM
PYTHON. PSIXOLOGIYA VA SOTSIOLOGIYA ILMIY JURNALLI, 2(10), 76-82.

5. Baxridtdinovich, H. B. (2024). PYTHONDA MA'LUMOTLAR
TAHLILI. PSIXOLOGIYA VA SOTSIOLOGIYA ILMIY JURNALI, 2(10), 69-75.

6. Baxridtdinovich, H. B. (2024). SUN'TY INTELLEKT VA KELAJAK
TEXNOLOGIYALARI. QISHLOQ XOJALIGI VA GEOGRAFIYA FANLARI ILMIY
JURNALL 2(5), 44-49.

7. Baxridtdinovich, H. B. (2025). TA'LIMDA CHATBOTLAR VA VIRTUAL
YORDAMCHILARDAN FOYDALANISH. PEDAGOGIK TADQIQOTLAR JURNALI, 3(1),
156-159.

8. Bakhridtdinovich, H. B. (2024). FUTURE TECHNOLOGIES. BIOLOGIYA VA
KIMYO FANLARI ILMIY JURNALLI, 1(10), 20-25.

9. Bakriddinovich, H. B. (2024). BIG DATA MANAGEMENT. BIOLOGIYA VA KIMYO
FANLARI ILMIY JURNALI, 1(10), 26-32.

10. Bakriddinovich, H. B. (2024). PYTHON PROGRAMMING LANGUAGE: AN IDEAL
CHOICE FOR BEGINNER PROGRAMMERS. WORLD OF SCIENCE, 7(12), 34-41.

11. Hamroyev, B. B. (2025). PYTHONDA MASSIVLAR BILAN ISHLASH. PEDAGOGIK
TADQIQOTLAR JURNALLI 2(2), 88-91.

122

https://scholar.google.com/scholar?hl=ru&as_sdt=0%2C5&q=wosjournals.com&btnG
https://www.researchgate.net/search/publication?q=worldly%20knowledge
https://journalseeker.researchbib.com/view/issn/3060-4923

PEDAGOGIK TADQIQOTLAR JURNALI Ne 4, Mart, 2025
ISSN: 3060-4923, Impact Factor — 7,212 worldly knowledge
Index: google scholar, research gate, research bib, zenodo, open aire.
https://scholar.google.com/scholar?hl=ru&as sdt=0%2C5&g=wosjournals.com&btnG
https://www.researchgate.net/search/publication?q=worldly %20knowledge
https://journalseeker.researchbib.com/view/issn/3060-4923

12. Baxridtdinovich, H. B. (2024). PYTHON DASTURLASH TILI VA UNING
DASTURIY TA'MINOT SOHASIDAGI O'RNI. MASTERS, 2(12), 41-48.

13. Ravshanov, A. (2024). DATA TYPES IN JAVASCRIPT PROGRAMMING
LANGUAGE. Introduction of new innovative technologies in education of pedagogy and
psychology, 1(3), 143-150.

14. Pamxabos, A. P. (2024). JAVASCRIPT S3BIKE ITPOI'PAMMUPOBAHUSA THUII
JAHHBIX JSON. Introduction of new innovative technologies in education of pedagogy and
psychology, 1(3), 167-174.

15. Ravshanovich, A. R. (2024). JSON IN JAVASCRIPT. Introduction of new innovative
technologies in education of pedagogy and psychology, 1(3), 175-182.

16. Pamxabos, A. P. (2024). TUIIbI BA3 JIAHHBIX. Introduction of new innovative
technologies in education of pedagogy and psychology, 1(3), 204-210

123

https://scholar.google.com/scholar?hl=ru&as_sdt=0%2C5&q=wosjournals.com&btnG
https://www.researchgate.net/search/publication?q=worldly%20knowledge
https://journalseeker.researchbib.com/view/issn/3060-4923

	Introduction
	The Concept of Polymorphism
	Duck TypingA dynamic approach where an object’s su
	Abstract Classes and Interfaces
	Differences Between Abstract Classes and Interface

	Conclusion

